Methane

The Coming Methane Hydrate Revolution?

|

Buring Hydrate
Credit: DOE

Over at The Atlantic Charles Mann has a remarkably interesting article, "What If We Never Run Out of Oil?" detailing how researchers are trying to tap into a vast new source of natural gas - methane trapped in ice at the bottom of the sea. Mann opens by describing recent efforts by Japanese scientists aboard the Chikyu research vessel to develop ways to "mine" this form of natural gas. He then segues to how the current fracking revolution is roiling energy markets:

Already the petroleum industry has been convulsed by hydraulic fracturing, or "fracking"—a technique for shooting water mixed with sand and chemicals into rock, splitting it open, and releasing previously inaccessible oil, referred to as "tight oil." Still more important, fracking releases natural gas, which, when yielded from shale, is known as shale gas. (Petroleum is a grab-bag term for all nonsolid hydrocarbon resources—oil of various types, natural gas, propane, oil precursors, and so on—that companies draw from beneath the Earth's surface. The stuff that catches fire around stove burners is known by a more precise term, natural gas, referring to methane, a colorless, odorless gas that has the same chemical makeup no matter what the source—ordinary petroleum wells, shale beds, or methane hydrate.) Fracking has been attacked as an environmental menace to underground water supplies, and may eventually be greatly restricted. But it has also unleashed so much petroleum in North America that the International Energy Agency, a Paris-based consortium of energy-consuming nations, predicted in November that by 2035, the United States will become "all but self-sufficient in net terms." If the Chikyu researchers are successful, methane hydrate could have similar effects in Japan. And not just in Japan: China, India, Korea, Taiwan, and Norway are looking to unlock these crystal cages, as are Canada and the United States….

If methane hydrate allows much of the world to switch from oil to gas, the conversion would undermine governments that depend on oil revenues, especially petro-autocracies like Russia, Iran, Venezuela, Iraq, Kuwait, and Saudi Arabia….

And if methane hydrates can be produced at a reasonable cost, switching from coal and oil to natural gas could help reduce globe-warming greenhouse gas emissions. However, cheap plentiful natural gas would slow the adoption of more costly no-carbon forms of energy such as wind, solar, and nuclear. As Mann observes…

…natural gas plays two roles. To politicians and economists, it is a vehicle for reasserting American might—cheap energy that will liberate the United States from foreign petroleum. To environmentalists, natural gas is a bridge fuel, a substitute for coal and oil that will serve until—but only until—the world can move to zero-carbon energy sources: sunlight, wind, tides, waves, and geothermal heat.

In the short run, these visions are compatible. Although the cost of renewable energy is falling rapidly, it is not yet equivalent to the cost of energy from fossil fuels. As an example, typical solar cells today have an EROEI of about 10—better than tar sands but worse than most oil and gas. (All such estimates are rough in the extreme, because the output of renewables, unlike that of petroleum, depends on where they are located. One recent estimate put the EROEI of Spain's extensive solar-power network at less than 3.) Many advocates for solar power believe that its EROEI will match that of fossil fuels within a decade.

The whole Mann article is well worth your attention.